If aϵ{−1,2,3,4,5} and bϵ{0,3,6}, write the set of all ordered pairs (a, b) such that a + b = 5.
We have,
a + b = 5
⇒a=5−b
∴b=0⇒a=5−0=5,
b=3⇒a=5−3=2,
b=6⇒a=5−6=−1,
Hence, the required set of ordered pairs
If \(a \epsilon {2, 4, 6, 9} and \(b \epsilon \{4, 6, 18, 27\}, then form the set of all ordered pairs (a, b) such that a divides b and a < b.