If a=cosθ+isinθ, then (1+a)(1-a) is equal to
cotθ
cotθ2
icotθ2
itanθ2
Explanation for the correct option:
Find the value of (1+a)(1-a):
Given, a=cosθ+isinθ
Put the value of a in given expression;
(1+a)(1-a)=1+cosθ+isinθ1-cosθ-isinθ
=1+cosθ+isinθ1-cosθ-isinθ×1-cosθ+isinθ1-cosθ+isinθ
=(1+cosθ+isinθ-cosθ-cos2θ-isinθcosθ+isinθ+isinθcosθ–sin2θ)(1-cosθ)2+sin2θ
=(1+2isinθ-cos2θ-sin2θ)(1-2cosθ+cos2θ+sin2θ)
=2isinθ2(1-cosθ) ∵sin2θ+cos2θ=1
=2isinθ2cosθ22sin2θ2 ∵sinθ=sin(θ2)cos(θ2),1-cosθ=2sin2(θ2)
=icosθ2sinθ2
=icot(θ2)
Hence, Option ‘C’ is Correct.