If A≡(9,−1) and B≡(−9,5), then the locus of moving point P such that |¯¯¯¯¯¯¯¯AP|:|¯¯¯¯¯¯¯¯BP|=1:2, where |¯¯¯¯¯¯¯¯AP| denotes the length of AP, is
A
(x−15)2+(y+3)2=160
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(x+15)2+(y−3)2=160
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(x−3)2+(y−15)2=160
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(x−15)2+(y+3)2=180
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A(x−15)2+(y+3)2=160 Let P≡(x,y). Then |¯¯¯¯¯¯¯¯AP|:|¯¯¯¯¯¯¯¯BP|=1:2 ⇒2|¯¯¯¯¯¯¯¯AP|=|¯¯¯¯¯¯¯¯BP| ⇒4|¯¯¯¯¯¯¯¯AP|2=|¯¯¯¯¯¯¯¯BP|2 ⇒4((x−9)2+(y+1)2)=(x+9)2+(y−5)2 ⇒3x2−90x+3y2+18y+222=0 ⇒x2−30x+y2+6y+74=0 ⇒(x−15)2+(y+3)2=160 Hence, the equation of the locus of P satisfying the condition is (x−15)2+(y+3)2=160