1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative
If a function...
Question
If a function
f
:
[
2
,
∞
)
→
B
defined
by
f
x
=
x
2
-
4
x
+
5
is a bijection, then B =
(a) R
(b) [1, ∞)
(c) [4, ∞)
(d) [5, ∞)
Open in App
Solution
Since f is a bijection, co-domain of f = range of f
⇒
B = range of f
Given
:
f
x
=
x
2
-
4
x
+
5
Let
f
x
=
y
⇒
y
=
x
2
-
4
x
+
5
⇒
x
2
-
4
x
+
5
-
y
=
0
∵
Discrimant
,
D
=
b
2
-
4
a
c
≥
0
,
-
4
2
-
4
×
1
×
5
-
y
≥
0
⇒
16
-
20
+
4
y
≥
0
⇒
4
y
≥
4
⇒
y
≥
1
⇒
y
∈
[
1
,
∞
)
⇒
Range
of
f
=
[
1
,
∞
)
⇒
B
=
[
1
,
∞
)
So, the answer is (b).
Suggest Corrections
0
Similar questions
Q.
If a function
f
:
[
2
,
∞
)
→
B
defined by
f
(
x
)
=
x
2
−
4
x
+
5
is a bijection, then B is
Q.
If
f
:
[
2
,
∞
)
→
B
defined by
f
(
x
)
=
x
2
−
4
x
+
5
is a bijection, then
B
=
Q.
Let
f
:
[
2
,
∞
)
→
X
be defined by
f
x
=
4
x
-
x
2
. Then, f is invertible if X =
(a)
[
2
,
∞
)
(b)
(
-
∞
,
2
]
(c)
(
-
∞
,
4
]
(d)
[
4
,
∞
)
Q.
The function
f
:
A
→
B
defined by
f
x
=
-
x
2
+
6
x
-
8
is a bijection if
(a)
A
=
(
-
∞
,
3
]
and
B
=
(
-
∞
,
1
]
(b)
A
=
[
-
3
,
∞
)
and
B
=
(
-
∞
,
1
]
(c)
A
=
(
-
∞
,
3
]
and
B
=
[
1
,
∞
)
(d)
A
=
[
3
,
∞
)
and
B
=
[
1
,
∞
)