If a functionF is such that F(0)=2,F(1)=3,F(x+2)=2F(x)-F(x+1)forx≥0, then F(5) is equal to
-7
-3
17
13
Explanation for correct option:
Step1. Finding value forF(2)
Given, F(0)=2,F(1)=3
F(x+2)=2F(x)–F(x+1)….(i)
Now, put x=0 in (i)
F(0+2)=2F(0)–F(0+1)⇒F(2)=2F(0)–F(1)⇒F(2)=2×2–3⇒F(2)=4–3⇒F(2)=1
Step2. Finding value for F(3)
Put x=1in(i)
F(1+2)=2F(1)–F(1+1)⇒F(3)=2F(1)–F(2)⇒F(3)=2×3–1⇒F(3)=6–1⇒F(3)=5
Step3. Finding value for F(4)
Put x=2in(i)
F(2+2)=2F(2)–F(2+1)⇒F(4)=2F(2)–F(3)⇒F(4)=2×1–5⇒F(4)=2–5⇒F(4)=-3
Step4. Finding value for F(5)
Put x=3in(i)
F(3+2)=2F(3)-F(3+1)⇒F(5)=2F(3)-F(4)⇒F(5)=2×5-(-3)⇒F(5)=10+3⇒F(5)=13⇒F(5)=13
Therefore F(5)=13
Hence, the correct option is (D).