The correct option is B 46∫−4f(x)dx
f(2−x)=f(2+x),f(4−x)=f(4+x)
Putting x→x+2 in second equation
⇒f(2−x)=f(6+x)⇒f(2+x)=f(6+x)
f(x) has period 4.
Now,
I=50∫0f(x)dx⇒I=48∫0f(x)dx+50∫48f(x)dx⇒I=124∫0f(x)dx+2∫0f(x)dx[∵f(x) is periodic with period 4, so,f(x)=f(4−x)=f(4+x)]⇒I=242∫0f(x)dx+5∴I=125
Also,
46∫−4f(x)dx
Putting x→x+4, we get
=50∫0f(x+4)dx=50∫0f(x)dx (∵f(x+4)=f(x))
51∫1f(x)dx
Putting x→x−1, we get
=50∫0f(x−1)dx≠50∫0f(x)dx
52∫2f(x)dx
Putting x→x−2, we get
=50∫0f(x−2)dx≠50∫0f(x)dx