If a function f(x) defined by aex+be-x,-1≤x<1cx2,1≤x≤3ax2+2cx,3<x≤4 be continuous for some a,b,c∈Randf'(0)+f'(2)=e, then the value of a is:
1(e2-3e+13)
e(e2-3e-13)
e(e2+3e+13)
e(e2-3e+13)
Explanation for correct option.
Step1. Finding value of 'c'
Given,f(x)=aex+be-x,-1≤x<1cx2,1≤x≤3ax2+2cx,3<x≤4
f(x) is continuous.
At x=1,b=ce–ae2
At x=3
9c=9a+6c
⇒c=3a
Step2.Finding value of ‘a’
Now,
f'(0)+f'(2)=e
⇒ a-b+4c=e
⇒a-e(3a-ae)+4×3a=e
⇒ a-3ae+ae2+12a=e
⇒ 13a-3ae+ae2=e
∴a=e(13-3e+e2)
Hence, the correct option is (D).