If a>0 and discriminant of ax2+2bx+c is negative, then ∣∣
∣∣abax+bbcbx+cax+bbx+c0∣∣
∣∣ is
A
Positive
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(ac−b2)(ax2+2bx+c)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Negative
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
0.0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C Negative LetΔ=∣∣
∣∣abax+bbcbx+cax+bbx+c0∣∣
∣∣ ApplyingR3→R3−xR1−R2; we get Δ=∣∣
∣
∣∣abax+bbcbx+c00−(ax2+2bx+c)∣∣
∣
∣∣ Δ=(b2−ac)(ax2+2bx+c) Now,b2−ac<0anda>0 ⇒Discriminant ofax2+2bx+c is -ve and a>0 ⇒(ax2+2bx+c)>0for all xϵR ⇒Δ=(b2−ac)(ax2+2bx+c)<0,i.e.−ve.