If a+ib11 = p + iq, where i = √−1.Find the value of (b+ia)11.
-q - ip
Given (a+ib)11 = p + iq
We know, from complex number properties (¯¯¯¯Z)2 = (Z2)
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯(a+ib)11 = (a+ib)11
Substitute the value of (a+ib)11 = p + iq
We get,
(a−ib)11 = p - iq
Taking (−i)11 common in LHS and -i common in RHS
(−i)11 [b+ia]11 = (-i) (q + ip)
(−1)11 [b+ia]11 = (-i) (q + ip)
Substitute the value of (i)11 = -i
(-1) (-i)(b+ia)11 = (-i)(q + ip)
(b+ia)11 = - q - ip
So, the value of (b+ia)11 = - q - ip