The correct option is
D (−12,1)We are given,
f(x)=x2−2x+(−a2+1)=0→(1)
here the co-efficient of x2 is positive & g(x)=x2−(a+1)x+(a−1)=0→(2) & also here the co-efficient of x2 is positive.
⇒ Let α1,β1 are the roots of f(x) & α2,β2 are the roots of g(x).
Now, here we can absorbed that at pt α1 & β1 g(x) will generated negative values.
So, g(α1),g(β2)<0
From equati0on (1)
α1 or β1=−b±√b2−4ac2a
=−(−2)±√(−1)2−4(1)(a−1)2(1)
=2±√4a22=1±a
So, α1=1+a & β1=1−a
as a∈R
Now, g(α1)=(1+a)2−(a+1)(1+a)+1(a−1)<0
1+2a+a2−a2−2a−1+a−1<0
a<1→(1)
& g(β1)=(1−a)2−(a+1)(1−a)+1(a−1)<0
1−2a+a2−(a−a2+1−a)+a−1<0
1−2a+a2+a2−1+a−2<0
2a2−a−1<
2a2−2a+a−1<0
2a(a−1)+1(a−1)<0
(2a+1)(a−1)<0
→ at a>1 quantity >0, so condition False
→ now at a<−1/2 quantity >0, so condition again False
→ now at a ∈(−1/2,1) quantity <0
So, a∈(−1/2,1)→((1)
From (i) & (ii)
a∈(−12,1)