wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A is a matrix such that A2+A+2I=0, then which of the following is/are true?

A
A is non-singular
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A is symmetric
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A cannot be skew-symmetric
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
A1=12(A+I)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A A cannot be skew-symmetric
B A is non-singular
D A1=12(A+I)
A2+A+2I=0
A2+A=2I
A+I=A1(2I)
A1=12(A+I)
As A1 exists, |A|0 ,hence it is a non-singular matrix
Here A=AT hence it is not skew symmetric.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Symmetric Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon