If a is a non-zero scalar, then the vectors →α=a^i+2a^j−3a^k,→p=(2a+1)^i+(2a+3)^j+(a+1)^k , →r=(3a+5)^i+(a+5)^j+(a+2)^k
A
Coplanar if a<0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Coplanar if a>0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Always coplanar
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Never coplanar
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D Never coplanar Let they be coplanar ∣∣
∣∣a2a−3a2a+12a+3a+13a+5a+5a+2∣∣
∣∣=0 (R3→R3−R1R2→R2−R1) a∣∣
∣∣12−3a+134a+12a+45−a4a+2∣∣
∣∣=0 R2−R2−R1 R3=R3−R1 a∣∣
∣∣12−3a14(a+1)2a+33−a4a+5∣∣
∣∣=0 C2→C2−C1 C3→C3−C1 a∣∣
∣∣11−4a1−a3a+42a+3−3a2a+2∣∣
∣∣=0 a(2(1−a2)−1((a2+a)2−(2a+3)(3a+4))−3a2−(2a+3)(1−a))=0 a(2(1−a2)+9a2+12a−1(2a2+2a−6a2−17a−12)−3a2+2a2+a−3) a(11+10a2+2a)=0 but 10a2+28a+11≠0