If A is a square matrix of order 2 such that A2=0, then
A=[αβγ−α], where α,β,γ are numbers such that α2+βγ=0
Let A=[abcd]⇒A2=[abcd][abcd]A2=[a2+bcb(a+d)c(a+d)d2+bc]=[0000] (Since, A2=0)if a=0, then, b=c=d=0 and A=0if a≠0, a2+bc=0⇒a2=−bc≠0b(a+d)=c(a+d)=0⇒a=−d⇒a2=d2Hence A=[abc−a], where a2+bc=0or A=[αβγ−α], where α2+βγ=0