If A is a square matrix such that A2=A, then (I+A)3-7A is?
3I
0
I
2I
Explanation of the correct option:
Compute the required value:
It is given that, A2=A
Consider, (I+A)3-7A
(I+A)3=I3+A3+3I2A+3IA2 [Using(a+b)3=a3+b3+3a2b+3ab2] ⇒(I+A)3-7A=I3+A3+3I2A+3IA2-7A⇒(I+A)3-7A=I+A3+3A+3A2-7A
A3=A2×A
⇒(I+A)3-7A=I+(A2×A)+3A+3A2-7A
Putting, A2=A
⇒(I+A)3-7A=I+(A×A)+3A+3A-7A⇒(I+A)3-7A=I+A2+6A-7A⇒(I+A)3-7A=I+A2-A⇒(I+A)3-7A=I+A-A⇒(I+A)3-7A=I
Hence, option (C) is the correct answer.