If A is a square matrix such that A2=A, then write the value of 7A−(1+A)3, where I is an identify matrix.
We have, 7A−(I+A)3=7A−(I+A)[(I+A)(I+A)]=7A−(I+A)[I.I+I.A+A.I+A.A]
⇒ 7A−(I+A)[I+2A+A] {∵A.A=A2=A,A.I=A=I.A}
⇒=7A−(I+A)(I+3A)=7A−(I+4A+3A2)=−I. [Given that A2=A].