If A is a symmetric and B skew-symmetric matrix and A+B is non-singular and C=(A+B)-1(A-B), then prove that
(i)CT(A+B)C=A+B(ii)CT(A-B)C=A-B(iii)CTAC=A
Step 1: To prove CT(A+B)C=(A+B)
A is symmetric. So, AT=A
B is skew-symmetric. So, BT=-B
It is given that, C=(A+B)-1(A-B)
Multiply it by (A+B)
⇒(A+B)C=(A+B)(A+B)-1(A-B)⇒(A+B)C=A-B..(i)
Now,
⇒CT=[(A+B)-1(A-B)]T
=(A-B)T((A+B)-1)T [∵(AB)T=BTAT]
=(AT–BT)((A+B)T)-1 [AT=AandBT=-B]
=(A+B)(A–B)-1..(ii)
⇒CT(A+B)C=(A+B)(A–B)-1(A–B)⇒CT(A+B)C=(A+B)..(iii)
Hence, CT(A+B)C=(A+B)
Step 2: To prove CT(A-B)C=A-B
Now, taking the transpose of (iii)
⇒[CT(A+B)C]T=(A+B)T⇒CT[(A+B)]TC=AT+BT⇒CT(AT+BT)C=A–B⇒CT(A-B)C=A-B..(iv)
Hence, CT(A-B)C=A-B
Step 3: To prove CTAC=A
Now, add (iii) and (iv)
⇒CT(A+B)C+CT(A-B)C=A+B+A-B⇒CT[A+B+A-B]C=2A⇒2CTAC=2A⇒CTAC=A
Hence, CTAC=A
Hence, all parts are proved