If A is an invertible matrix of order 2, then det (A−1) is equal to
a) det(A)
(b) 1det(A)
c) 1
d) zero
We know that AA−1=I
∴|AA−1|=|I|⇒|A||A−1|=1 (Using AA−1|=A||A−1and|I|=1)
⇒|A−1|=1|A|=1det(A). Hence, the correct options is (b).
Alternate method
Since, A is an invertible matrix, A−1 exists and A−1=1|A|adj(A)
As matrix A is of order 2.
Let A=[abcd] then, |A|=ad−bc and adj(A)=A=[d−b−ca]
Now, A−1=1|A|adj(A)=1|A|A=[d−b−ca]=⎡⎢⎣d|A|−d|A|−c|A|a|A|⎤⎥⎦
∴ ⎡⎢⎣d|A|−b|A|−c|A|a|A|⎤⎥⎦=1|A|×1|A|∣∣∣d−b−ca∣∣∣=1|A|2(ad−bc)
=1|A|2′|A| (∵|A|=ad−bc)
=1|A|
det(A−1)=1det(A). Hence, the correct option is (b).