If A is matrix of size n×n such that A2+A+2I=0, then
A
A is non-singular
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A≠0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
|A|≠0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
A−1=−12(A+I).
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AA−1=−12(A+I). B|A|≠0 CA is non-singular DA≠0 A2+A+2I=0 ⇒A(A+I)=−2I ⇒|A(A+I)|=|−2I|⇒|A||A+I|=(−2)n≠0. Thus, |A|≠0. Also, A{−12(A+I)}=I ⇒A−1=−12(A+I). Clearly A≠0 for otherwise |A|=0. Hence, options A,B,C and D.