If A is the area of a right angled triangle where ∠Q=90∘ and b is the base of the ΔPQR, then, find the length of altitude QN on the hypotenuse of the triangle.
2Ab√b4+4A2
QR = b
A = Ar(Δ PQR)
A=12×b×PQPQ=2Ab.....(1)ΔPNQ∼ΔPQR(AA)⇒PQPR=NQQR.....(2)From ΔPQRPQ2+QR2=PR24A2b2+b2=PR2PR=√4A2+b2b2=√4A2+b2b
Equation (2) becomes
2Ab×PR=NQbNQ=2APRNQ=2Ab√4A2+b2