Let the two numbers be p and q
∴ Arithmetic mean of p and q,
A=p+q2 ...(i)
Since geometric means G1 & G2 are inserted between p and q.
p,G1,G2,q are in GP.
Let r be the common ratio of the GP
⇒q=pr3
r=(qp)1/3
Now, G1=p(qp)1/3
⇒G1=q1/3p2/3 ...(ii)
& G2=p(qp)2/3
⇒G2=q2/3p1/3 ...(iii)
R.H.S=G21G2+G22G1
⇒R.H.S=(q1/3p2/3)2q2/3p1/3+(q2/3p1/3)2q1/3p2/3
(From equations (ii) & (iii))
⇒R.H.S=q2/3p4/3q2/3p1/3+q4/3p2/3q1/3p2/3
⇒R.H.S=p43−13+q43−13
⇒R.H.S=p+q
⇒R.H.S=2×(p+q2)
⇒R.H.S=2A (From equaion (i))
⇒R.H.S=L.H.S
⇒2A=G21G2+G22G1