If A is the set of all xϵR such that x(logx)2−3logx+1>1000, and A=(a,∞) then √10a will be ___
Open in App
Solution
A=(1000,∞) (logx)2−3logx+1>logx103=3logx10
If log10x=t then we have t2−3t+1>3t
or t3−3t2+t−3>0
or t(t2+1)−3(t2+1)>0
or (t2+1)(t−3)>0⇒t−3>0
as t2+1 is always + ive ∴t>3 or log10x>3 ∴x>103=1000∴xϵ(1000,∞)