If A is the set of all xϵR such that x(log x)2−3 log x+1>1000, and A=(a,∞) then √10a will be
A=(a,∞)
(log x)2−3 log x+1>logx 103=3 logx 10
If log10 x=t then we have
t2−3t+1>3t
or t3−3t2+t−3>0
or t(t2+1)−3(t2+1)>0
or (t2+1)(t−3)>0⇒t−3>0
as t2+1 is always + ive
∴t>3 or log10x>3
∴x>103=1000
∴xϵ(1000,∞)
or a=1000