wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α is the value of xϵ[0,π] satisfying 3 cos x + 3 sin x + sin 3x - cos 3x = 0, then find the value of 4απ ?


___

Open in App
Solution

We need to simplify the given expression to find the solutions. We observe that the given expression has

sin x + cos x. So if we can express sin 3x — cos 3x in terms of sin x+ cos x and sin x cos x, we can solve it

using the substitution sin x + cos x= t
Consider sin 3x —cos 3x.

sin3xcos3x=3sinx4sin3x4cos3x+3cosx
=3(sinx+cosx)4(sin3x+cos3x)

We have,(sinx+cosx)3=sin3x+cos3x+3sinxcosx(cosx+sinx)
sin3x+cos3x=(sinx+cosx)33sinxcosx(sinx+cosx)

we got all the terms in the given expression in terms of (sin x + cos x) and sin x cos x. so we will go for

the substitution sin x+ cos x = t

3cosx+3sinx+sin3xcos3x=3t+3t4[t33t212t][sinxcosx=t212]
=6t+2t36t
=2t3
2t3=0

t=0

sinx+cosx=0

tanx=1=tan(3π4)
=> answer = 3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon