If α is the value of xϵ[0,π] satisfying 3 cos x + 3 sin x + sin 3x - cos 3x = 0, then find the value of 4απ ?
We need to simplify the given expression to find the solutions. We observe that the given expression has
sin x + cos x. So if we can express sin 3x — cos 3x in terms of sin x+ cos x and sin x cos x, we can solve it
using the substitution sin x + cos x= t
Consider sin 3x —cos 3x.
sin3x−cos3x=3sinx−4sin3x−4cos3x+3cosx
=3(sinx+cosx)−4(sin3x+cos3x)
We have,(sinx+cosx)3=sin3x+cos3x+3sinxcosx(cosx+sinx)
⇒ sin3x+cos3x=(sinx+cosx)3—3sinxcosx(sinx+cosx)
⇒ we got all the terms in the given expression in terms of (sin x + cos x) and sin x cos x. so we will go for
the substitution sin x+ cos x = t
⇒3cosx+3sinx+sin3x−cos3x=3t+3t−4[t3−3t2−12t][∵sinxcosx=t2−12]
=6t+2t3−6t
=2t3
⇒2t3=0
⇒t=0
⇒sinx+cosx=0
⇒tanx=−1=tan(3π4)
=> answer = 3