The correct option is B (2015)2
[A1]=∣∣∣[1001]∣∣∣=1[A2]=∣∣∣[2112]∣∣∣=3[A3]=∣∣∣[3223]∣∣∣=5A2015=∣∣∣[2015201420142015]∣∣∣=(2015)2−(2014)2=(4029)∴|A1|+|A3|+.......|A2015|1+3+5+7....4029Theseseriesareterm=1commondifference=2⇒4029=1+(n−1)×2,40282=n−1,n=2015⇒Sum=20152(1+4029)⇒2015×40302=(2015)2