The equation of ellipse is
x2a2+y2b2=1, where a>b
Now,
△POP′ is right angle triangle
∴(P′P)2=(OP)2+(OP′)2
⇒(ae−ae)2+(b2a+b2a)
=[(ae−0)2+(b2a−0)2]+[(ae−0)2+(0−b2a)2]
⇒0+(2b2a)2=(ae)2+(b2a)2+(ae)2+(−b2a)2
⇒4b4a2=2(ae)2+2b4a2
⇒4b4a2−2b4a2=2a2e2
⇒2b4a2=2a2e2
⇒b4a4=e2
⇒e=b2a2
Now,
b2=a2(1−e2)
⇒b2a2=1−e2
⇒e=1−e2
⇒e2+e−1=0
⇒e=−(1)±√(1)2−4×1×(−1)2×1
⇒e=−1±√1+42
⇒e=−1±√52
⇒e=√5−12
⇒e=√5−12
Hence, e=√5−12