wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a latus-rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse.

Open in App
Solution

The equation of ellipse is
x2a2+y2b2=1, where a>b
Now,
POP is right angle triangle
(PP)2=(OP)2+(OP)2
(aeae)2+(b2a+b2a)
=[(ae0)2+(b2a0)2]+[(ae0)2+(0b2a)2]
0+(2b2a)2=(ae)2+(b2a)2+(ae)2+(b2a)2
4b4a2=2(ae)2+2b4a2
4b4a22b4a2=2a2e2
2b4a2=2a2e2
b4a4=e2
e=b2a2
Now,
b2=a2(1e2)
b2a2=1e2
e=1e2
e2+e1=0
e=(1)±(1)24×1×(1)2×1
e=1±1+42
e=1±52
e=512
e=512
Hence, e=512

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon