(i) Reflexive : (a,b)R(c,d) if (a,b)(a,d)∈A×A
a+b=b+c
Consider (a,b)R(a,b)⇒(a,b)∈A×A
⇒a+b=b+a Hence R is reflexive
(ii) Symmetric : (a,b)R(c,d) given by (a,b)(c,d)∈A×A
a+d=b+c⇒c+b=d+a
⇒(c,d)R(a,b) Hence R is symmetric
(iii) equivalence relation = reflexive + symmetric + transitive
Transitive : Let (a,b)R(c,d) and (c,d)R(c,f)
(a,b)(c,d),(c,f)∈A×A
a+b=b+c and 4c+f=d+e
a+b=b+c
⇒a−c=b−d...(1) & c+f=d+e...(2)
adding (1) & (2) a+f=b+e⇒(a,b)R(e,f) Transitive
So, R is equivalence relation
from A={1,2,3...9} are will select a and b such that
2+b=5+a
Let b=4 and a=1 Hence (2+4)=(5+1)
and [(2,5)]={(1,4)(2,5),(3,6)(4,7)(5,8)(6,9)} is
the equivalent class under relation R