A={1,2,3,4},
B={3,5,7,9},
C={7,23,47,79}f:A→Bf(x)=2x+1
g:B→C,g(x)=x2−2
Now, gof(x)=gf(x)=g(2x+1)
=(2x+1)2−2=4x2+4x−1
∴gof(x)=4x2+4x−1
On putting x=1,2,3,4
gof={(1,7),(2,23),(3,47),(4,79)}
∵gofis bijection function.
∴ Its inverse is possible
⇒(gof)−1={(7,1),(23,2),(47,3),(79,4)}
⇒f−1og−1={(7,1),(23,2),(47,3),(79,4)}
∵(gof)−1=f−1og−1 by theorem.