B∪C={x,y}∪{a,c,y}={a,c,x,y}
A×(B∪C)={a,b}×{a,c,x,y}
={(a,a),(a,c),(a,x),(a,y),(b,a),(b,c),(b,x),(b,y)}
∴A×(B∪C)={(a,a),(a,c),(a,x),(a,y),(b,a),(b,c),(b,x),(b,y)} ..........(1)
A×B={a,b}×{x,y}={(a,x),(a,y),(b,x),(b,y)}
A×C={a,b}×{a,c,y}={(a,a),(a,c),(a,y),(b,a),(b,c),(b,y)}
(A×B)∪(A×C)={(a,x),(a,y),(b,x),(b,y)}∪{(a,a),(a,c),(a,y),(b,a),(b,c),(b,y)}
={(a,a)(a,x),(a,y),(a,c),(b,x),(b,y),(b,a),(b,c)} .........(2)
From (1) and (2) we have
A×(B∪C)=(A×B)∪(A×C)
Hence verified.