If A=(cosθisinθisinθcosθ), where i=√−1, then by the principle of Mathematics Induction prove that An=(cosnθisinnθisinnθcosnθ)
Open in App
Solution
A=(cosθisinθisinθcosθ)i=√−1An=(cosnθisinnθisinnθcosnθ)An=cosn2θ−i2sin2nθ=1 Or else solve by putting n=1,2,3,4........A2=(cos2θisin2θisin2θcos2θ)A2=cos22θ−i2sin22θ=1