wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=[cosθsinθsinθcosθ] then show that for all the positive integers n An=[cosnθsinnθsinnθcosnθ]

Open in App
Solution

A=(cosθsinθsinθcosθ)

A2=(cosθsinθsinθcosθ)(cosθsinθsinθcosθ)

=(cos2θsin2θsinθcosθ+sinθcosθcosθsinθcosθsinθcos2θsin2θ)

=(cos2θsin2θsin2θcos2θ)

The result is true for n=1 and 2

Let us assume the result is true for n=k

i.e., Ak=(coskθsinkθsinkθcoskθ)

We have to prove the result for n=k+1

Ak+1=AkA

=(coskθsinkθsinkθcoskθ)(cosθsinθsinθcosθ)

=(coskθcosθsinkθsinθcoskθsinθ+sinkθcosθ(sinkθcosθ+coskθsinθ)coskθcosθsinkθsinθ)

=(cos(k+1)θsin(k+1)θsin(k+1)θcos(k+1)θ)

The result is true for n=k+1 also. Hence by the principle of Mathematical Induction, we can understand that the result is true for all nN.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon