A=(cosθsinθ−sinθcosθ)
A2=(cosθsinθ−sinθcosθ)(cosθsinθ−sinθcosθ)
=(cos2θ−sin2θsinθcosθ+sinθcosθ−cosθsinθ−cosθsinθcos2θ−sin2θ)
=(cos2θsin2θ−sin2θcos2θ)
The result is true for n=1 and 2
Let us assume the result is true for n=k
i.e., Ak=(coskθsinkθ−sinkθcoskθ)
We have to prove the result for n=k+1
Ak+1=Ak⋅A
=(coskθsinkθ−sinkθcoskθ)(cosθsinθ−sinθcosθ)
=(coskθcosθ−sinkθsinθcoskθsinθ+sinkθcosθ−(sinkθcosθ+coskθsinθ)coskθcosθ−sinkθsinθ)
=(cos(k+1)θsin(k+1)θ−sin(k+1)θcos(k+1)θ)
The result is true for n=k+1 also. Hence by the principle of Mathematical Induction, we can understand that the result is true for all n∈N.