If A=2305,B=-7-324,C=-10-47, verify that A-2B+3C=A-2B-3C.
Step1: Calculation of the matrix A-2B+3C.
Multiply each element of B by 2 and each element of C by 3 to obtain 2B and 3C respectively.
A-2B+3C=2305-2-7-324+3-10-47=2305-2-72-32·22·4+3-13·03-43·7=2305--14-648+-30-1221=2-(-14)3--60-45-8+-30-1221=2+143+6-4-3+-30-1221=169-4-3+-30-1221=16-39+0-4-12-3+21=139-1618
Step2: Calculation of the matrix A-2B-3C.
A-2B-3C=2305-2-7-324-3-10-47=2305-2-72-32·22·4-3-13·03-43·7=2305--14-648--30-1221=2305--14--3-6-04--128-21=2305--14+3-64+12-13=2305--11-616-13=2--113--60-165--13=2+113+6-165+13=139-1618
Conclusion: The relation A-2B+3C=A-2B-3C is verified.
Solve for a, b and c; if (i) [−45+532]=[b+423c−1]
(ii)[aa−bb+c0]=[3−100]
If A=21-13,B=-3241,C=-3241, verify the following :
(ii) A+B+C=A+B+C
(i) A+B=B+A
If k>1 and the determinant of the matrix A2 is k2, then |α|=
A=kkαα0αkα00k