If A=[4−1x−3] is an idempotent matrix, then the value of x is
Open in App
Solution
Given A=[4−1x−3] is an idempotent matrix.
We know that for an idempotent matrix, A2=A A2=[4−1x−3][4−1x−3] =[16−x−1x9−x]=[4−1x−3]
Equating the terms, we get 16−x=4⇒x=12
or, 9−x=−3⇒x=12 ∴x=12