If A=[1 2−1 3]B=[4 01 5]C=[2 01−2],
a = 4, and b = - 2, then show that:
(i) A + (B + C) = (A + B) + C
(ii) A (BC) = (AB) C
(iii) (a + b)B = aB + bB
(iv) a (C - A) = aC - aA
(v) (AT)T = A
(vi) (bA)T = b AT
(vii) (AB)T=BTAT
(viii) (A - B)C = AC - BC
(ix) (A−B)T=AT−BT
We have, A=[1 2−1 3]B=[4 01 5]
C=[2 01 −2] and a = 4, b = - 2.
(i) A + (B + C) = [1 2−1 3]+[6 02 3]=[7 21 6]
and (A + B) + C = [5 20 8]+[2 01 −2]
=[7 21 6] = A + (B + C)
Hence proved.
(ii) (BC) = [4 01 5][2 01 −2]=[8 07 −10]
and A (BC) [1 2−1 3][8 07 −10]
[8+14 0−20−8+21 0−30]=[22 −2013 −30]
Also, (AB) =[1 2−1 3][4 01 5]=[6 10−1 15]
(AB) C = [6 10−1 15][2 01 −2]
=[22 −2013 −30]=A(BC)
(iii) (a + b) B = (4 -2)[4 01 5]
=[8 02 10]
and aB + bB = 4B -2B
[16 04 20]−[8 02 10]
=[8 02 10]
= (a + b) B
(iv) (C - A) =[2−1 0−21+1 −2−3]=[1 −22 −5]
and a(C - A)=[4 −88 −20]
Also, aC - aA =[8 04 −8]−[4 8−4 12]=[4 −88 −20]
= a (C - A)
(v) AT =[1 2−1 3]T=[1 −12 3]
Now, (AT)T=[1 2−1 3]T
= A
(vi) (bA)T=[−2 −42 −6]T [∵ b = - 2]
=[−2 −42 −6]
and AT=[1 −12 3]
∴bAT=[−2 2−4 −6]=(bA)T
(vii) AB = [1 2−1 3][4 01 5]=[4+2 0+10−4+3 0+15]=[6 10−1 15]
∴(AB)T=[6 −110 15]
Now, BTAT=[4 01 5][1 −12 3]=[6 −110 15]
=(AB)T
(viii) (A - B) = [1−4 2−0−1−1 3−5]=[−3 2−2 −2]
(A - B) C = [−3 2−2 −2][2 01 −2]=[−4 −4−6 4] ...(i)
Now, AC = [1 2−1 3][2 01 −2]=[4 −41 −6] ...(ii)
and BC = [4 01 5][2 01 −2]=[8 07 −10] ...(iii)
∴AC−BC=[4−8 −4−01−7 −6+10] [using Eqs. (ii) & (iii)]
=[−4 −4−6 4]
= (A - B)C [using Eq. (i)]