wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=⎡⎢⎣abcbcacab⎤⎥⎦,abc=I,ATA=1, then the value of a3+b3+c3 can be

A
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is C 4
Given:- A=abcbcacab,abc=I,ATA=I

A=abcbcacab

AT=abcbcacab

So, AT=A, from the matrices.

ATA=I

A2=I[AT=A]

abcbcacababcbcacab=100010001

a2+b2+c2ab+bc+caab+bc+caab+bc+caa2+b2+c2ab+bc+caab+bc+caab+bc+caa2+b2+c2=100010001

from the matrix a2+b2+c2=1,ab+bc+ca=0

(a+b+c)2=a2+b2+c2+2(ab+bc+ca=0) [formula]

(a+b+c)2=1[ab+bc+ca=0,a2+b2+c2=1]

(a+b+c)=±1

We know

a3+b3+c33abc=(a+b+c)(a2+b2+c2(ab+bc+ca))

a3+b3+c33(1)=(±1)(10)[abc=I]

a3+b3+c3=3±1

a3+b3+c3=4 or 2

a3+b3+c3=4

Hence, option D is correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Finding Inverse Using Elementary Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon