If A(→a),B(→b),C(→c) be the vertices of a triangle whose circumcentre is the origin, then orthocenter is given by
A(→a), B(→b), C(→c) are the vertices of a triangle ABC and R(→r) is any point in the plane of triangle ABC, then →r.(→a×→b+→b×→c+→c×→a) is always equal to
The determinant ∣∣ ∣ ∣∣b2−abb−cbc−acab−a2a−bb2−abbc−acc−aab−a2∣∣ ∣ ∣∣ equals to:
(a) abc(b-c)(c-a)(a-b) (b) (b-c)(c-a)(a-b) (c) (a+b+c)(b-c)(c-a)(a-b) (d) None of these