If A={x:x=2n+1,nϵZ} and B={x:x=2n,nϵZ} then find A∪B.
We have A∪B={x:x is an odd integer} ∪ {x:x is an even integer}={x:x is an integer}=Z.
If A={x:x=3n,nϵZ} and B={x:x=4n,nϵZ} then find A∩B.
Let A = {x:x ϵ N}, B = {x:x=2n,n ϵ N}, C = {x:x=2n−1,n ϵ N} and , D = {x: x is a prime natural number}. Find :
(i) A∩B (ii) A∩C
(iii) A∩D (iv) B∩C
(v) B∩D (vi) C∩D
If U={x:x∈N}, A={x:x=2n,n∈N} and B={x:x is a prime number}, then A∩B is a set with cardinality ________.