The correct option is C {3}
Given that,
A={y:y=(a+1)2,a∈W and a≤5}
a={0,1,2,3,…}
Now,
y=(0+1)2=12 for a=0
y=1 for a=1
y=32 for a=2
y=2 for a=3
y=52 for a=4
y=3 for a=5
∴A={12,1,32,2,52,3}
B={y:y=(2n−1)2,n∈W and n<5}
n=0,1,2,3,4⇒For n=0,y=−12
For n=1,y=(2x1−1)2=12
For n=2,y=(2x2−1)2=32
For n=3,y=(2x3−1)2=52
For n=4,y=(2x4−1)2=72
∴B={−12,12,32,52,72}
C=−1,−12,1,32,2
Hence,
B∪C={−1,−12,12,1,32,2,52,72}
A−(B∪C)=3