The equation of a line joining the points P(1,4,6) and Q(5,4,4) is
x−15−1=y−44−4=z−64−6
x−14=y−40=z−6−2 .... (i)
Let M be the foot of the perpendicular drawn from the point A(1,2,1).
Coordinates of M are given by,
x−14=y−40=z−6−2=λ
x=4λ+1,y=0λ+4,z=−2λ+6
∴M≡(4λ+1,4,−2λ+6) ..... (ii)
The direction ratios of AM are 4λ+1−1,4−2,−2λ+6−1
i.e., 4λ,2,−2λ+5
Direction ratios of given line are (4,0,−2), since AM is perpendicular to the given line.
∴4(4λ)+0(2)+(−2)(−2λ+5)=0
∴16λ+4λ−10=0
∴λ=12
Putting λ=12 in equation (ii), we get
M≡(2,4,5)
Hence, the co-ordinates of the foot of the perpendicular are (3,4,5).