If a line has the direction ratios -18,12,-4, then what are its direction cosines?
Given,direction ratios are -18,12,-4.
Here a=-18,b=12 and c=-4, then direction cosines of a line are
(a√a2+b2+c2,b√a2+b2+c2,c√a2+b2+c2)=(−18√(−182)+(122)+(−42),12√(−182)+(122)+(−42)−4√(−182)+(122)+(−42))=(−18√484,12√484,−4√484)=(−1822,1222,−422)=(−911,611,−211)
Thus, the direction cosines are −911,611 and −211.