If the direction ratios of a line are a,b,c, then the direction cosines are:
[a√a2+b2+c2,ba2+b2+c2,c√a2+b2+c2]
Given direction ratios are:−18,12,−4
i.e. a=−18,b=12,c=−4
Now,√a2+b2+c2=√(−18)2+122+(−4)2
⇒√a2+b2+c2=√324+144+16=√484
⇒√a2+b2+c2=22
∴ Direction cosines are:−1822,1222,−422
or−911,611,−211