The correct option is
B 23Take O as a corner
OA,OB,OC are 3 edges thr0ugh the axes
Let OA=OB=OC=a
coordinates 0f O=(0,0,0)
A(a,0,0),B(0,a,0),C(0,0,a)
P(a,a,0),L(0,a,a),M(a,0,a),N(a,a,0)
The f0ur diag0nals OP,AL,BM,CN
Direction cosine Of OP:a−0,a−0,a−0=a,a,a=1,1,1
Direction cosine 0f AL:0−a,a−0,a−0=−a,a,a=−1,1,1
Direction cosine 0f BM:a−0,0−a,a−0=a,−a,a=1,−1,1
Direction cosine 0f CN:a−0,a−0,0−a=a,a,−a=1,1,−1
∴D.C's of OP are 1√3,1√3,1√3
D.C's of AL are −1√3,1√3,1√3
D.C's of BM are 1√3,−1√3,1√3
D.C's of CN are 1√3,1√3,−1√3
Let l,m,n be dc's of line and line ma\dfrac{1}{\sqrt{3}}es angle α
With OP:cosαl(1√3)+m(1√3)+n(1√3)=l+m+n√3
cosβ=−l+m+n√3
cosδ=l+m−n√3
cosγ=l−m+n√3
squaring and adding all the four
cos2α+cos2β+cos2γ+cos2δ
=13[(l+m+n)2+(−l+m+n)2+(l−m+n)2+(l+m−n)2]
=13[4l2+4m2+4n2]
=43 since l2+m2+n2=1
∴cos2α+cos2β+cos2γ+cos2δ=43