Then the co-ordinates of O,A,B&C are(0,0,0),(a,0,0),(0,a,0),(0,0,a). and that of P,L,MandN are(a,a,a),(0,a,a),(0,0,a),(a,a,0) respectively.
The four diagonals are UP,AL,BM,CN.
Direction cosines of OP are proportional toa−0,a−0,a−0i.e,(a,0,a),i.e.,1,1,1.
Similarily,
Direction cosines of AL are proportional to 0−a,a−0,a0i.e.,−1,1,1.
Direction cosines of BM are proportional to 1,1,−1
∴ Direction cosines of OP are 1√3,1√3,1√3
Direction cosines of AL are 1√3,−1√3,1√3
Direction cosines of BM are 1√3,−1√3,1√3
Direction cosines of CN are 1√3,1√3,−1√3
Let l,m,n be direction cosine of the line.
∴ The line makes angle α with OP.
cosα=l(1√3)+m(1√3)+n(1√3)
⟹cosα=l+m+n√3−(i)
Similarily,cosβ=−l+m+n√3−(ii)
andcosγ=l−m+n√3−(iii)
cosδ=l+m−n√3−(iv)
Squaring and adding (i),(ii),(iii)&(iv)
⟹cos2α+cos2β+cos2γ+cos2δ
=13[(l+m+n)2+(−l+m+n)2+(l−m+n)2+(l+m−n)2]
=13[4l2+4m2+4n2]=43[l2+m2+n2]
=43(1)=43(∵l2+m2+n2=1)
∴a=4