If a line makes angles α,β,γ with positive axes, then the range of sinαsinβ+sinβsinγ+sinγsinα is
If a line makes an angle α,β,γ with the axes, then
cos2α+cos2β+cos2γ=1 [∵cosα,cosβ,cosγ are directional cosines]
3−(sin2α+sin2β+sin2γ)=1
⇒ sin2α+sin2β+sin2γ=2
Also sin2α+sin2β+sin2γ ≥sinαsinβ+sinβsinγ+sinγsinα
⇒∑sinαsinβ≤2 …(1)
Also (∑sinα)2=∑sin2α+2∑sinαsinβ [∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ca]
(∑sinα)2>0
∑sin2α+2∑sinαsinβ>0
2+2∑sinαsinβ>0
2∑sinαsinβ>−2
∑sinαsinβ>−22
∑sinαsinβ>−1 …(2)
From (1) and (2)
2≥∑sinαsinβ>−1
Hence the range of ∑sinαsinβ is (−1,2]