The correct option is C 3
Thelinehaving direction ratio 2:2:1 intersect the line x−73=y−52=z−31at point A
Let x−73=y−52=z−31=λ
sox=3λ+7,y=2λ+5,z=λ+3are the coordinates of A
alsolineintersectx−12=y+14=z+13atpointB
soletx−12=y+14=z+13=μ
socoordinates of B are(2μ+1,4μ−1,3μ−1)
now direction ratios of line AB=(2μ+1−(3λ+7),4μ−1−(2λ+5),3μ−1−(λ+3))
=(2μ−3λ−6,4μ−2λ−6,3μ−λ−4)
now the point A and B are lying on the linehaving direction ratio 2:2:1
so direction ratio of AB will equal to direction ratio of line
so
2μ−3λ−62=4μ−2λ−62=3μ−λ−41
2μ−3λ−62=4μ−2λ−62
2μ−3λ−6=4μ−2λ−6
⇒λ=−2μ.....(i)
2μ−3λ−62=3μ−λ−41
2μ−3λ−6=6μ−2λ−8
⇒4μ+λ−2=0
puttingλ=−2μfrom(i)weget
4μ−2μ−2=0
⇒μ=1
sofrom(i)
λ=−2
HenceCoordinatesofAandBare
A(1,1,1),B(3,3,2)
DistancebetweenAB
D=√(x2−x1)2+(y2−y1)2+(z2−z1)2
=√22+22+12
=√9
=3