If a=log102 and b=log103, then log105√108 can be written as .
log105√108=log10(108)15=15 log10108=15 log10(22×33)=15 (log1022+log1033)=15( 2log102+3log103)=2a5+3b5
Simplify: (a+b)(2a−3b+c)−(2a−3b)(c). [3 MARKS]