If |a|<1 and |b|<1, then the sum of the series 1+(1+a)b+(1+a+a2)b2+(1+a+a2+a3)b3+⋯ is
A
1(1−a)(1−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1(1−b)(1−ab)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1(1−a)(1−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1(1−a)(1−b)(1−ab)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B1(1−b)(1−ab) 1+(1+a)b+(1+a+a2)b2+(1+a+a2+a3)b3+⋯=∞∑n=1(1+a+a2+⋯+an−1)bn−1=∞∑n=1(1−an1−a)bn−1=∞∑n=1bn−11−a−∞∑n=1anbn−11−a=11−a∞∑n=1bn−1−a1−a∞∑n=1(ab)n−1=11−a×11−b−a1−a×11−ab=1(1−b)(1−ab)