If a=cisα,b=cisβ,c=cisγ then a3b3c2=
a=cisα=Cosα+iSinα= eiα
b=cisβ=Cosβ+iSinβ= eiβ
a=cisγ=Cosγ+iSinγ= eiγ
∴a3b3c2=(eiα)3(eiβ)3(eiγ)2
=e3iαe3iβe2iγ= ei(3α+3β−2γ)
=Cos(3α+3β−2γ)+iSin(3α+3β−2γ)
=cis(3α+3β−2γ)
If α and β are the zeroes of the polynomial ax2+bx+c, then find the polynomial whose zeroes are 2α+3β,3α+2β.