If A=n3+(n+1)3+(n+2)3;n∈N and B=8n,n∈N then
A⊂B
B⊂A
A=B
None of these
The explanation for the correct option:
Given, A=n3+(n+1)3+(n+2)3;n∈N
13+23+33=1+8+27=36
23+33+43=8+27+64=99
33+43+53=27+64+125=216
∴A=36,99,216….
Also, B=8n,n∈N
∴B=8,16,24,32,40,48,....
⇒A⊄B,B⊄A
and A≠B
Hence, option ‘D’ is the correct answer.
If the sums of n terms of two arithmetic progressions are in the ratio 3n+5:5n-7, then their nth terms are in the ratio(a) 3n-15:n-1(b) 3n+15:n+1(c) 5n+13:n+1(d) 5n-13:n-1