If an=34−(34)2+(34)3+...+(−1)n−1(34)n and bn=1−an then find the minimum natural number n0 such that bn>an∀n>n0
Open in App
Solution
bn=1−an>an⇒an<12 Now an=34(1−(−34)n)1+34<12.......(Sum of n terms of G.P. with common ratio −34)
⇒(−34)n>−16
Obviously, it is true for all odd values of n. But for n=1,−34<−16 n=3,(−34)3=−2764<−16 n=5,(−34)5=−2431024<−16 now for n=7,(−34)7=−218712288>−16 Therefore minimum n0=7