The correct option is C an<4,∀ n≥1
p(n):an=√7+√7+√7+⋯n times
For n=1,a1=√7. So, an>7 is false.
a1>3 is false. a1=√7<4 and a1=√7<3 is true.
a2=√7+√7
Here, 2<√7<3⇒9<7+√7<10<16⇒3<√7+√7<4⇒3<a2<4
∴a2<3 is false. But, a2<4 is true.
Thus, a1<4,a2<4 is true.
Suppose ak<4
Now ak+1=√7+√7+√7+⋯(k+1) times
ak+1=√7+ak
∴a2k+1=7+ak<7+4,So ak+1<√11<4 So, ak+1<4
Thus an<4 is true for n=k+1
∴an<4,∀n∈N